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Abstract  

Background: Land use regression (LUR) models have mostly been developed to explain 

intra-urban variations in air pollution based on often small local monitoring campaigns. 

Transferability of LUR models from city to city has been investigated, but little is known about 

the performance of models based on large numbers of monitoring sites covering a large area. 

Objectives: To develop European and regional LUR models and to examine their transferability 

to areas not used for model development. 

Methods: We evaluated LUR models for nitrogen dioxide (NO2) and Particulate Matter (PM2.5, 

PM2.5 absorbance) by combining standardized measurement data from 17 (PM) and 23 (NO2) 

ESCAPE study areas across 14 European countries for PM and NO2. Models were evaluated 

with cross validation (CV) and hold-out validation (HV). We investigated the transferability of 

the models by successively excluding each study area from model building. 

Results: The European model explained 56% of the concentration variability across all sites for 

NO2, 86% for PM2.5 and 70% for PM2.5 absorbance. The HV R2s were only slightly lower than 

the model R2 (NO2: 54%, PM2.5: 80%, absorbance: 70%). The European NO2, PM2.5 and PM2.5 

absorbance models explained a median of 59%, 48% and 70% of within-area variability in 

individual areas. The transferred models predicted a modest to large fraction of variability in 

areas which were excluded from model building (median R2: 59% NO2; 42% PM2.5; 67% PM2.5 

absorbance). 
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Conclusions: Using a large dataset from 23 European study areas, we were able to develop LUR 

models for NO2 and PM metrics that predicted measurements made at independent sites and 

areas reasonably well. This finding is useful for assessing exposure in health studies conducted 

in areas where no measurements were conducted. 
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Introduction  

Many studies have documented adverse health effects associated with long-term exposure to air 

pollutants (Brunekreef and Holgate 2002). With the improvement of the accuracy of 

geographical data, air pollution models incorporating data from geographical information system 

(GIS) are of increasing interest in exposure assessment (Hoek et al. 2008; Jerrett et al. 2005). 

Land use regression (LUR) modeling is a popular method used for exposure assessment in health 

studies (Cesaroni et al. 2013; Estarlich et al. 2011; Gehring et al. 2011). LUR modeling is a GIS 

and statistics based method that exploits land use, geographic and traffic characteristics (e.g. 

traffic intensity, road length, population density) to explain spatial concentration variations at 

monitoring sites. 

Land use regression models were mostly constructed and utilized to predict concentrations 

within metropolitan areas (Hoek et al. 2011; Madsen et al. 2007; Marshall et al. 2008) or small 

regions(Brauer et al. 2003; Henderson et al. 2007). Often, models have been based on 

measurements made at a relatively small number of sampling sites (20~80 sites). Our recent 

study showed a positive association between the number of sampling sites and the prediction 

capability of models for NO2 based on 144 sites in the Netherlands (Wang et al. 2012), in 

agreement with observations for Girona, Spain (Basagaña et al. 2012). At least for some of the 

reported studies, there is still room to improve the model performances if more sampling sites 

were selected (Hoek et al. 2008). Several studies have reported the possibilities of building 

models in large areas in Europe, United States and Canada (Beelen et al. 2009; Hart et al. 2009; 
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Hystad et al. 2011; Vienneau et al. 2009; Vienneau et al. 2013). With a large number of sites, 

these models explained large fractions of NO2 variability (61%~90%) and a modest fraction of 

the variability of PM (40%~50%) across all sites. The large-area studies were all based upon 

routine monitoring data. National routine monitoring networks may include only a small number 

of sites within individual cities. Therefore it may be difficult to evaluate how well a large-area 

model explains within-city variability. This is relevant for epidemiological studies based in 

individual cities. A study in Switzerland based upon study-specific monitoring suggested that a 

country wide model did not perform well within six of the eight geographically diverse study 

areas (Liu et al. 2012). 

The applicability of LUR models can be increased by transferring them to adjacent areas with 

similar geography and GIS databases where no or few measurements were conducted. The 

transferability of models has been investigated for local and national models (Allen et al. 2011; 

Poplawski et al. 2009; Vienneau et al. 2010). Most of the earlier studies recommended using the 

locally built models, even though transferred models explained variations in concentrations fairly 

well. This is because all the transferred models were city-city or country-country transfers for 

which local specific variables were not available and there was no advantage in the number of 

sampling sites as compared to the locally developed models. 

So far, few studies attempted to explore the performance of LUR models with combined 

geographical areas in terms of prediction ability and transferability at independent sites and areas 

mainly due to lack of sufficient, comparable measurement data. In the context of the European 
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Study of Cohorts for Air Pollution Effects (ESCAPE 2013), we applied a standardized approach 

for measurements, GIS variable collection and model development for NO2 and Particulate 

Matter (PM) in 36 study areas in Europe (Beelen et al. 2013; Cyrys et al. 2012; Eeftens et al. 

2012a; Eeftens et al. 2012b). We recently published LUR models developed within individual 

study areas for nitrogen dioxide (NO2) and particulate matter (Beelen, et al. 2013; Eeftens et al. 

2012a). The ESCAPE database provides a unique opportunity to address important questions 

regarding application of LUR models developed for even larger areas. Therefore, the aims of this 

study are 1) to develop LUR models for NO2, PM2.5 and PM2.5 absorbance based on combining 

the ESCAPE study areas across Europe and across four regions of Europe; 2) to evaluate the 

model performances systematically in terms of the model fitting and prediction ability; and 3) to 

investigate the transferability of the regional and European models to monitoring sites and areas 

not included in the model building. 

Methods  

Study areas and air pollution measurements   

Details of the ESCAPE study design and the measurement campaign have been described 

previously (Cyrys et al. 2012; Eeftens et al. 2012b). Briefly, an intensive monitoring campaign 

was conducted in 36 European study areas between October 2008 and May 2011. ESCAPE 

included 20 areas with simultaneous measurements of both PM and NO2 at 20 sites per area, and 

20 sites where only NO2 was measured. In an additional 16 areas, where PM measurements were 

not available, only NO2 measurements were conducted at 40 sites per area. The number of 
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measurement sites was doubled in the large study area of the Netherlands and Belgium. In each 

area, we chose sampling sites at street, urban background and regional background locations. 

Sites were also selected to cover locally important variation e.g. presence of a port or altitude. 

These sites were selected to represent the spatial distribution of air pollution and residential 

addresses of participants of cohort studies in these areas. The background sites have been 

carefully selected to the locations not influenced by local traffic and other local emissions (e.g. 

industry and port) (Beelen et al. 2013; Eeftens et al. 2012a). Annual average concentrations were 

calculated from three two-week samples in the cold, warm and intermediate seasons. Due to 

limited number of samplers, five sites and the references site were measured simultaneously. The 

measured values were adjusted for temporal trends with data from the continuous reference site 

in each area by calculating absolute differences between concentrations at monitoring sites and 

reference sites and using that as adjustment factor (Cyrys et al. 2012; Eeftens et al. 2012b). In 

this paper, we selected the 23 areas (Figure1) in which traffic intensity variables were available 

for LUR model building in line with the importance of traffic intensity variables in model 

development (Beelen et al. 2013). This included 17 of the 20 PM/ NO2 areas and 6 of the 16 NO2 

only areas. We allocated the areas to 4 regions according to the geographical location, the 

characteristics of the climate, the traffic intensity levels and the configuration of the 

cities/country. These regions included five areas in north Europe (Oslo, Stockholm, Copenhagen, 

Helsinki/Turku, Umea), seven in the west (Netherlands and Belgium, London, Manchester, 

Bradford, Ruhr area, Erfurt, Paris), six in the center (Munich, Vorarlberg, Györ, Lugano, 
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Grenoble, Lyon) and five in the south (Turin, Rome, Athens, Barcelona, Marseille) (Figure 1 and 

Table 1). 

For this study we selected NO2 and PM2.5 absorbance to represent traffic-related air pollution and 

PM2.5 for a more complex mixture of sources. NO2 was measured using Ogawa badges following 

the Ogawa analysis protocol (Ogawa&Co V 3.98, USA, Inc.). PM2.5 samples were collected on 

pre-weighted filters using Harvard Impactors, and were then used to measure absorbance (Cyrys 

et al. 2012; Eeftens et al. 2012b). 

Predictor variables  

We extracted values for the GIS predictor variables at the locations of sampling sites using 

ArcGIS (ESRI, Redlands, California). Details of the predictor variables have been described in 

previous papers (Beelen et al. 2013; Eeftens et al. 2012a). Briefly, the predictor variables were 

derived from both centrally available Europe-wide GIS databases and locally collected GIS data 

by the local centers using standard definitions. 

Central GIS predictor variables included road network, land use, population density and altitude 

data. The digital road network was obtained from EuroStreets version 3.1 (EuroStreets 2013) for 

the year 2008. For all roads and major roads, the total lengths of roads were calculated within a 

buffer size of 25, 50, 100, 300, 500, 1000 meters. Traffic intensity data were not available for 

this road network. Land use variables were derived from the European Corine Land Cover (CLC 

2000) database for the year 2000 for the buffer sizes of 100, 300, 500, 1000 and 5000 meters. 

Digital elevation data were obtained through the Shuttle Radar Topographic Mission (SRTM 
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2013). Detailed road network with linked traffic intensity for all road links were obtained from 

local sources for all 23 areas. Local land use, population density, altitude and other local 

variables were also locally extracted for modeling. 

For the regional and European models, we pooled the data by including all the central GIS 

predictors and the local traffic variables with traffic intensity. We combined the centrally 

available land use variables high and low residence density, and the natural and urban green 

variables as not all the areas contained them separately. We made efforts to incorporate more 

local common variables for specific regions to capture regional variations. We included regional 

background concentrations of NO2, PM absorbance and PM2.5 as the mean of the measured 

concentrations at (1 to 20) ESCAPE regional background sites in each local study area to 

characterize the spatial differences between study areas. In the Netherlands, regional background 

concentrations were interpolated from regional background sites throughout the country because 

background concentrations may vary at such a large scale. In total, 49 variables were evaluated 

at the European level and 54, 53, 54, 64 variables in the north, west, middle and south regions 

(see Supplemental Material, Table S1). 

Model development  

A total of 960 NO2 sites and 356 PM sites (4 sites were missing due to failed campaign) were 

available for modeling from 23 and 17 study areas respectively. Detailed procedures of the NO2 

and PM model development have been published elsewhere (Beelen et al. 2013; Eeftens et al. 

2012a). The regional and European models were developed using the same strictly standardized 
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approaches. Briefly, a supervised stepwise regression was used to develop the LUR model. We 

first evaluated univariate regression of the annual concentrations by entering all potential 

predictor variables. We forced the regional background concentration variable in the first step 

(for the European and regional models). Then the variable which produced the highest adjusted 

R2 and which had the a priori defined direction of effect (e.g. positive for traffic intensity) was 

selected as the second predictor. Secondly, the remaining variables were added separately and 

we assessed whether the variable with the highest increase in adjusted R2 improved the model by 

at least 1%. This process continued until no more variable with the a priori specified sign could 

increase the model adjusted R2 by at least 1%. In the final step, we excluded the variables which 

had a p-value >0.1. We checked whether the variance inflation factor (VIF) was lower than 3 in 

order to avoid multi-collinearity. 

Model evaluations  

We used three approaches for model evaluation:   

1. 	 We investigated the model fit at individual study areas by applying the European/regional 

model to the sites of each area that were used for modeling. The Modelintra  R2  shows the  

within area variations explained by the European/regional models which is directly 

comparable with the R2  of  city-specific models. The Model 2 
intra  R  is important for studies   

conducted within individual cities that use the European/regional model. The overall R2  is 

relevant for multi-city studies that exploit both within and between city- variability of air 

pollution contrasts. The Model  R2 
intra  is important for European studies such as ESCAPE as  

12 



  

cohorts were located within a city or small area and cohort-specific epidemiological analyses  

were conducted.   

2.	  Cross validation is an internal validation for testing the stability of model fit. We conducted 

leave-one-area-out-cross-validation (LOAOCV) by leaving out all observations from a  

complete area of M study areas (N= 23 for NO2  and 17 for PM), refitting the model based on  

the remaining M-1 areas, and investigating the agreement between predicted and observed 

concentrations for each area that was left out. This was iterated M times and the LOA  OCV  

reflects the heterogeneity of model fit due to regional variations between study areas.  We do 

not report leave-one-site-out cross-validation which was  almost identical to the model R  2  

probably because of the large training dataset.  

3. 	 The hold-out validation (HV) is an evaluation of model predictive power to independent  

sites not used for model building. In contrast with cross validation, it reflects the prediction  

ability of models to the cohort addresses within the areas on which the models had been  

established. As a test, we divided the full set into two parts, the training sets were used for 

modeling and the remaining test sets were used for external evaluation. For NO2, we  

developed models using the PM/ NO2  sites with 20-40 sites per area (480 sites in total) as  

training sets and the remaining 480 NO2-only sites as test sets. For PM2.5 and PM2.5 

absorbance, a randomly selected 25% of the PM sites stratified by study area were used for 

validation purpose as we had fewer sites available for PM model building than for NO2  

model building. The HV R2  is the squared Pearson correlation between predictions and 

observations at the independent sites throughout the whole study area. We calculated the HV  
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R2 by truncating the values of predictors in the test data sets that were outside the range of 

the values observed in the data set for model development, to prevent unrealistic predictions 

based on model extrapolations (Wang et al. 2012). Prediction errors were estimated by root 

mean squared error (RMSE). In our previous study, the same NO2 training and test sets were 

used for the ESCAPE city-specific model evaluations individually in each study area (Wang 

et al. 2013). Therefore, a fair comparison of prediction ability (HV R2) between the 

European model and the city-specific models can be conducted using the same test sets for 

hold-out validation. The comparison was available only for NO2 due to relatively large 

number of sampling sites. 

Transferability of LUR models  

To evaluate the prediction abilities of the regional/ European models to independent individual 

study areas, we developed the regional and European models by excluding one area at a time and 

applied the transferred models directly to the sites of the area that was left out. Therefore, 23 

NO2 models and 17 PM models were built respectively until each of the study areas had been 

excluded once from model building. 

The TRANSintra R2 is the squared Pearson correlation between observed and predicted values in 

each of the remaining area that was excluded from modeling. The TRANSintra R2 is different 

from the Modelintra and LOAOCV R2 as the measurements conducted in the respective validation 

areas were completely left out from model development. 
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Results  

NO2  and PM concentrations  

Table 2 shows the concentration distributions of NO2 and PM metrics across the study areas by 

site types. Substantial spatial variations were found for all the pollutants across Europe. The 

variability was larger for NO2 than for PM2.5. The spatial variability for PM2.5 absorbance was 

intermediate between PM2.5 and NO2. Concentration contrasts were larger at the street sites for 

NO2 and PM2.5 absorbance than at the urban and rural background sites. Concentration contrasts 

for PM2.5 were more similar at all the site types, suggesting an influence of multiple sources in 

addition to traffic. 

Models in combined areas  

Table  2  shows the  model  details  of  NO2, PM and PM2.5 absorbance combining all the European 

study areas. The  NO2, PM2.5  and PM2.5 absorbance  models  explained 56%, 86% and 70%, 

respectively, of  the  variation across  all  sites, which includes  both within and between area  

variations  (overall  model  R2). The  LOAOCV  R2  was  5% and 6% lower than the  model  R2  for 

NO2  and PM2.5, and was identical to the model R2  for  PM2.5  absorbance. The hold-out validation 

R2s  (50% training vs. 50% test  sites  for NO2, 75% training vs. 25% test  sites  for PM  metrics) 

were  slightly smaller than or nearly identical  to the  model  R2s, explaining 54%, 80% and 70% 

for NO2, PM2.5  and PM2.5  absorbance  at  the  independent  validation sites  respectively (see 

Supplemental  Material, Table  S2). The  HV  R2  did not  change  if  the  predictor range  was  not  

truncated as  only 1 site  for NO2  model  was  truncated. The  HV  RMSE  values  were  close  to the  
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values of LOAOCV RMSE for NO2 and PM metrics. The RMSE values were relatively small 

compared to the range of measurements as shown in Table S2 (see Supplemental Material). The 

median HV R2 of the European NO2 model at individual study areas was identical to those of the 

city-specific models reported in Wang et al. (2013) (see Supplemental Material, Figure S1). In 

e.g. the Turin and Paris areas with a low hold-out evaluation R2, the HV R2s of the European 

model were considerably larger than those of the city-specific models. 

All the models in Table 3 included traffic intensity variables. The regional background 

concentration explained a large fraction (71%) of variation in PM2.5 documenting the importance 

of between-area differences for PM2.5 as compared to that for the more traffic-related pollutants 

NO2 and PM2.5 absorbance. 

The regional models performed equally well as the European models in all regions except 

Southern Europe, where none of the models performed well in terms of the predictions to the 

independent sites (HV R2: 0-0.23) (see Supplemental Material, Table S3). Reassigning Turin 

from south Europe to central Europe region only slightly changed the results. 

As shown in Table 3, the median within-area variability (Modelintra R2) explained by the 

European model for NO2 and absorbance at individual study areas was similar to the overall 

model R2, suggesting predominant sources of local emissions. For PM2.5, the median Modelintra 

R2 was much lower than the overall model R2 (0.48 vs. 0.86). Figure 2 and Figure S2 (see 

Supplemental Materials) present the correlation between predicted and measured PM2.5, PM2.5 
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absorbance and NO2 by study areas. As the figures show, the variation of PM2.5 between areas 

was substantial compared to the within areas variation (e.g. low PM2.5 values in northern 

European cities such as Stockholm and high PM2.5 values in southern European cities such as 

Rome). On the contrary, for NO2 and PM2.5 absorbance, variation within areas was substantial 

compared to the variation between areas (Supplemental Material, Figure S2). The observations 

are more under-predicted within individual areas for PM metrics (median regression slope: 0.47 

PM2.5; 0.57 PM2.5 absorbance; 0.56 NO2) than across the whole European study areas (regression 

slope: 0.85 PM2.5; 0.70 PM2.5 absorbance; 0.57 NO2). 

Transferability  

Table 4 shows the performance of the models which used all monitoring data excluding one area 

at the time. These models explained on average 57%, 84% and 69% variability of NO2, PM2.5 

and PM2.5 absorbance respectively. The model structures and R2s were similar to the models in 

Table 3 which were based on all study areas. They included the same variable categories but 

with to some extent different buffer sizes. The models predicted the spatial variations of NO2 and 

PM2.5 absorbance well in the areas not used for model building with median TRANSintra R2s of 

0.59 for NO2 and 0.67 for PM2.5 absorbance. Transferability was less for PM2.5 with a median R2 

of 0.42. The same pattern was found for the model R2 focusing on within-area variability only 

(Modelintra). The variation in prediction R2s was relatively small for NO2 with an IQR of 0.09, 

but larger for PM2.5 (IQR 0.17) and PM2.5 absorbance (IQR 0.21) showing that predictions were 

less comparable for the two PM metrics. The variation is shown in Figure 3 and Figure S3 (see 

17 



  

       

    

      

       

         

 

      

        

      

         

      

   

      

        

        

            

         

      

Supplemental Materials). Interestingly, this did not depend so much on area as on the specific 

combination of area and component. For example, the areas in Hungary (Gyor), Germany 

(Munich) and Austria (Vorarlberg) showed decent model fit and predictability for NO2 and PM2.5 

absorbance, but almost no model fit and predictability for PM2.5. The transferred regional models 

showed similar characteristics as those of the European models, while the median TRANSintra R2 

was slightly lower (see Supplemental Material, Table S4). 

Discussion  

In this study we developed LUR models for NO2, PM2.5 and PM2.5 absorbance with combined 

measurement data from 23 study areas across Europe. For NO2 and PM2.5 absorbance, these 

models predicted spatial variations in areas not used for model building well. For PM2.5, 

prediction R2s were moderate for intra-urban variation though in some areas in central Europe 

prediction R2s were low. The overall R2 including both between and within study area variability 

was high for PM2.5 and PM2.5 absorbance and more moderate for NO2. 

Comparisons with other large area studies   

Our European models performed comparable or even better in predictions of NO2 and PM2.5 than 

other large area studies (Table S5) (Beelen et al. 2009; Beckerman et al. 2013; Bergen et al. 

2013; Hystad et al. 2011; Novotny et al. 2011; Sampson et al. 2013; Vienneau et al. 2013). For 

PM2.5 absorbance, this is the first report of LUR models in such a large geographical area. Model 

R2s are difficult to compare as studies differed in study area, model development strategies, scale 

of prediction, offered predictor variables and number of sites. Consistent across studies, the 
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regional background predicted a small fraction of variability for NO2 and a large fraction for 

PM2.5. For intra-city model R2, our NO2 European model exhibited comparable performance 

(Modelintra R2=0.59) to the Canadian national model in seven specific areas (Edmonton, 

Montreal, Sarnia, Toronto, Victoria, Vancouver and Winnipeg) with Modelintra R2 of 0.43 

(Hystad et al. 2011).We observed no heterogeneity of model fit across study areas in the 

European model (LOAOCV R2s were close to the model R2). 

Our European and regional models have several strengths compared to previous European 

models which modeled concentration in 1×1 km grids (Beelen et al. 2009; Vienneau et al. 2009) 

or more recently 100x100m (Vienneau et al. 2013): 1) We modeled small scale variation using 

sampling sites which were selected according to a standard method to cover intra-urban 

concentration contrasts, 2) We included multiple pollutants (PM2.5, PM absorbance,) which were 

much less available or measured with different methods from routine monitoring networks in 

Europe. 3) We incorporated local traffic intensity data not available in Europe-wide databases 

(land use and road length data only). All the models included traffic intensity variables, 

improving prediction ability (HV R2) over models not having local traffic intensity data (but 

potentially road length) e.g. from 0.46 to 0.54 for NO2. 

The poor performance of the south European model may be attributed to the large heterogeneity 

of model fit (low LOAOCV R2) across south European study areas in which the concentrations 

in Athens were overestimated more than those of the other study areas. More formal methods 
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such as hierarchical cluster analysis to define regions could be explored to improve 

comparability of regions. 

Our PM2.5 European model explained a median of 48% within-area variations as compared to the 

overall model R2 of 86% which was largely explained by substantial differences in regional 

background concentrations. This was consistent with the R2s of the Canadian and American 

PM2.5 model (46% and 63%) of which the satellite data alone explained 41% and 52% of the 

variability respectively (Hystad et al. 2011; Beckerman et al. 2013) (see Supplemental Material, 

Table S5). PM2.5 is well known to be a regional pollutant with a large fraction of secondary 

aerosol, not explained well by the local GIS and traffic variables typically available for LUR 

model building. This suggested that for pollutants (e.g. PM2.5) with much larger overall than 

within-city R2, joint analyses of cohorts including between-city exposure components might be 

advisable. This does require the assumption of sufficient comparability of cohorts across Europe. 

Other methods such as Partial Least Squares regression may help to increase the prediction 

ability of models (Sampson et al. 2013). 

Comparison with ESCAPE city-specific models 

NO2 and PM models based on small training sets and a large number of predictor variables 

overestimate predictive ability in independent test sets though still explaining fairly large 

fractions (50%~60%) of spatial variability (Wang et al. 2012; Wang et al. 2013). Hold Out 

validation R2s of the European models developed on a large number of sites were very similar to 

the model R2. The average differences of the model R2s and HV R2s were just 2%, 6% and 0% 
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for NO2, PM2.5 and PM2.5 absorbance. The slightly larger drop for PM2.5 could be due to more 

sources affecting PM2.5 compared to NO2 and PM2.5 absorbance. 

The ESCAPE city-specific models which have been published previously using local specific 

variables explained a median of 82%, 71% and 89% of the concentration variations for NO2, 

PM2.5 and PM2.5 absorbance (Beelen et al. 2013; Eeftens et al. 2012a). This is higher than the R2 

of within-area variability explained by the European models in Table 2 (Modelintra R2: 59%, 48%, 

70% respectively). The average differences between the individual city-specific model R2 

(Beelen et al. 2013; Eeftens et al. 2012a) and the intra-urban R2 (see Supplemental Material, 

Figure S3) are 24%, 24% and 17% for NO2, PM2.5 and PM2.5 absorbance respectively. As model 

R2 overestimates predictive ability especially when developed for a relatively small number of 

sites (Wang, 2012; Wang, 2013), the comparison between local and European models should not 

be based on model R2 but holdout evaluation R2 at independent sites. Comparison of the 

prediction ability between the European and city-specific models is feasible only for NO2 which 

suggested that the European and city-specific model had similar median prediction ability to the 

external sites not used for modeling, The HV R2 in some cities e.g. Turin (ITU) and Paris (FPA) 

which had poor predictions by the city-specific model may be improved substantially by the 

European model. We cannot draw a firm conclusion about one or the other approach being more 

reliable because comparisons for PM models were infeasible. The European model may reduce 

bias in health estimates due to relatively large number of sampling sites and small number of 

variables as compared to the city-specific models (Basagaña et al. 2013). 
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Most of the combined models included traffic variables in both large (≥500m) and small buffers 

(≤50m), representing general area characteristics as well as localized influences. In contrast to 

the study-area specific ESCAPE models (Beelen et al. 2013; Eeftens et al. 2012a) , none of our 

European models included population/residence density but instead selected road length in large 

buffers which likely also represents urban-rural difference in terms of population distributions 

(de Hoogh et al. 2013). In our GIS dataset, the squared correlation R2 between road length and 

population density is 0.46 within 1000m buffer but is only 0.13 within 100m buffer. Road length 

variables in large buffers represent therefore various aspects of “total human activity” such as 

traffic, heating, population density, etc. 

Transferability of combined models  

Previous studies on the transferability of LUR models were mainly focusing on city-to-city or 

country-to-country transferability. Briggs et al. (2000) concluded that the SAVIAH (Small-Area 

Variations In Air Quality and Health) models could be applied to other UK cities after 

calibrating with data from a few monitoring sites. Poplawski et al. (2009) and Allen et al.(2011) 

observed that local calibration may improve the predictions of the Canadian city specific models 

to a few other comparable cities in Canada and the United States. Vienneau et al. (2010) found 

reasonable transferability of British and the Dutch models between these two countries. All the 

previous studies concluded that the performances of the transferred models were worse than 

those of the local source models. Our results show prediction capabilities for the traffic related 

pollutants NO2 and PM2.5 absorbance which are on par with those documented, in terms of Hold 
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Out validation R2s, with previous local exercises (Basagaña et al. 2012; Wang et al. 2012). This 

might be due to the fact that the ESCAPE study used highly standardized monitoring and GIS 

data for measurement, data collection and model building across all areas. This suggests that our 

combined models can be carefully applied to other areas in Europe with common predictors, 

similar geographies and availability of consistent regional background concentration within the 

region. Because the locations are well characterized, any candidate background location in a new 

area can be judged against the same criteria. Obviously, this will only work when the pollution 

characteristics or components are actually measured in the new area. In practice, this means that 

modeling of new areas will in most cases be restricted to NO2/NOx and PM10, in fewer areas (in 

Europe) to PM2.5 and PM absorbance. Satellite data have large spatial coverage and have 

improved NO2 and PM10 European models based upon routine monitor data by 5% and 11% 

(Vienneau et al. 2013). Satellite data could be used in the future to estimate background 

concentrations in new locations. 

In some individual areas of central Europe, the European model performed poorly for PM2.5 

however, probably due to lack of an important local predictor variable, e.g. residential density in 

Munich and Vorarlberg, industry in Hungary or altitude in Vorarlberg. Therefore, caution is 

needed when transferring the European models to cities for which the European model lacks 

predictor variables that are known to be important sources of variation locally. The poor 

performance in a few areas, suggests that the value of the European model is especially in 

multi-center analyses such as ESCAPE compared to individual areas. 
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Applications  in  epidemiological studies  

The overall R2 of the European model was highest for PM2.5 and lowest for NO2. In contrast, for 

within-city variation the model had the lowest predictive ability for PM2.5 though still fairly high 

(median R2=0.48). The PM2.5 absorbance model explained both large fractions of variability 

overall and within-city. The high overall R2 suggests that the model can be used in pooled 

analyses of health data, exploiting exposure contrasts between study areas. Using between-city 

comparisons would especially be useful to increase PM2.5 contrasts. For ESCAPE where the 

health findings based on these local exposure models are currently being published (Beelen et al. 

2014; Raaschou-Nielsen et al. 2013), the model offers the possibility for pooled analyses. Pooled 

analyses have not been conducted so far, partly because of concerns of comparability of the 

diverse cohorts across Europe. There is also the perspective to include new study populations 

from areas where local measurements were never conducted but relevant predictor variables are 

available. For exposure assessment with LUR models, efforts are mainly in the sampling 

campaign and GIS data collection. 

Conclusions  

European LUR models for NO2, PM2.5 and PM2.5 absorbance were found to have reasonable 

power to predict spatial variations of these components in areas not used for model building. 
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Table 1. Study areas. 

Code Type Region Study area 
NOS PM/NO2 North Oslo, Norway 
SST PM/NO2 North Stockholm, Sweden 
FIH PM/NO2 North Helsinki, Turku, Finland 
DCO PM/NO2 North Copenhagen, Denmark 
SUM NO2 North Umea, Sweden 
UKM PM/NO2 West Manchester, UK 
UKO PM/NO2 West London, Oxford, UK 
BNL PM/NO2 West Netherlands and Belgium 
GRU PM/NO2 West Ruhr area, Germany 
GRE NO2 West Erfurt, Germany 
UKB NO2 West Bradford, UK 
FPA PM/NO2 West Paris, France 
GMU PM/NO2 Central Munich, Germany 
AUV PM/NO2 Central Vorarlberg, Austria 
FLY NO2 Central Lyon, France 
HUG PM/NO2 Central Györ, Hungary 
SWL PM/NO2 Central Lugano, Switzerland 
FGR NO2 Central Grenoble, France 
ITU PM/NO2 South Turin, Italy 
IRO PM/NO2 South Rome, Italy 
SPB PM/NO2 South Barcelona, Spain 
FMA NO2 South Marseille, France 
GRA PM/NO2 South Athens, Greece 
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Table 2. Distributions of measured annual average NO2 and PM concentrations across Europe. 

Pollutant and site typea Nb Min P25 Median P75 Max 
NO2 (µg/m3) 

S 454 11.80 25.48 33.98 49.90 109.00 
UB 414 3.03 15.38 22.88 30.67 57.63 
RB 92 1.53 9.56 15.48 17.98 32.87 

PM2.5 (µg/m3) 
S 166 7.87 12.03 17.18 21.17 36.30 
UB 144 5.62 10.97 15.87 18.62 32.59 
RB 47 4.42 11.20 13.86 16.64 23.24 

PM2.5 absorbance (10-5m-1) 
S 166 0.78 1.63 2.16 2.81 5.09 
UB 144 0.53 1.23 1.67 2.01 3.03 
RB 47 0.33 0.92 1.16 1.45 2.37 

aSite types: S-street sites; UB-urban background; RB-regional background. bTotal number of 

sites in the study areas. 
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Table 3. European models for NO2, PM2.5 and PM2.5 absorbance. 

Predictors Partial 
R2 

Betaa Modelintra 
b 

R2/IQR 
LOAOCVc 

R2/RMSE 
NO2 (Nd=960, final model R2=0.56) 2.63E-01 0.59/0.19 0.50/8.49 (µg/m3) 

Regional background concentration 0.08 2.44E-06 
Traffic load in 50m 0.35 2.74E-04 
Road length in 1000m 0.50 -2.84E-07 
Natural and Green in 5000m 0.55 2.21E-04 
Traffic intensity on the nearest road 0.56 1.38E+01 
Intercept 2.63E-01 

PM2.5 (Nd=356, final model R2=0.86) 0.48/0.16 0.81/2.38 (µg/m3) 
Regional background concentration 0.71 9.73E-01 
Traffic load between 50m and 1000m 0.81 4.75E-09 
Traffic load in 50m 0.84 5.28E-07 
Road length in 100m 0.86 2.12E-03 
Intercept 3.06E-01 

PM2.5 absorbance (Nd=356, final model 
R2=0.70) 

0.70/0.19 0.70/0.45 (10-5m-1) 

Regional background concentration 0.28 9.06E-01 
Traffic load in 50m 0.58 2.07E-07 
Road length in 500m 0.67 2.90E-05 
Natural and Green in 5000m 0.69 -9.63E-09 
Traffic load between 50m and 1000m 0.70 4.20E-10 
Intercept 2.95E-01 

aBeta: coefficients of predictor variables in the models. bThe Modelintra R2s show the median and 

Inter Quartile Range of the within-area variability explained by the European model in individual 

areas. cLOAOCV: Leave-One-Area-Out-Cross-Validation.dN: number of monitored sites available 

for model building. 
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Table 4. Transferability of European models to areas which were not used for model building 

[median (IQR)]. 

Pollutant Model R2 Modelintra 
a R2 TRANSintra 

b 

R2 
TRANSintra 

b 

RMSE 
NO2 0.57(0.01) 0.59(0.19) 0.59(0.09) 5.58(2.28) 
PM2.5 0.84(0.01) 0.48(0.16) 0.42(0.17) 1.14(0.58) 
PM2.5 absorbance 0.69(0.01) 0.70(0.19) 0.67(0.21) 0.23(0.07) 
aModelintra R2: R2 of within-area variation explained by European model, the same data as in 

Table 2. bTRANSintra: squared correlations and RMSE between the predictions and observations 

at independent areas. 
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Figure legends  

Figure 1.  Map of study areas including region indication.  

Figure 2.  Scatterplot of predicted and measured PM2.5  with study areas color and symbol coded  

and two city-specific examples, Rome (IRO) and Stockholm (SST).  See Table 1 for study area  

codes.   

Figure 3.  Transferability (TRANSintra  R2) of the European models for NO2  and PM in the 23 

study areas. See Table 1 for study area codes.   
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Figure 2. 
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